If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+14x-5=0
a = 14; b = 14; c = -5;
Δ = b2-4ac
Δ = 142-4·14·(-5)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{119}}{2*14}=\frac{-14-2\sqrt{119}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{119}}{2*14}=\frac{-14+2\sqrt{119}}{28} $
| 10-6=7k+8k+4 | | h/2-2=8 | | 32-4=-8x | | 5.1=6.5-0.7x | | 4x-3(3)=18 | | 55-8x=12x | | 10x+65=125 | | v/8+13=16 | | -4x=12+2x | | 7n^2=-24n+16 | | 11-6t=-37 | | 16=24-2j | | 2(4z−2)=44 | | 6x-2=4x+48=360 | | 2,800,000+x/0.06+x/0.007+x/0.2175=x | | (2x+4)+76=18 | | 6x2=4x+48=360 | | 23-3d=11 | | 45=5f-15 | | (5x-7)=(-2x+6) | | 2/5+4a=-3/5 | | m/6+20=27 | | v^2-12v=-32 | | 9x+27=x+6 | | (5x-7)=(2x-7) | | 22-3w=88 | | 1/q+1/2q=1/12 | | r/2+6=9 | | 125+30x=215+20x | | 6x-35-3x+53=120 | | 9(x+3)=x+6 | | 6(3+-2)=4x-2+4x |